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Understanding autonomous system design through collective intelligence –

communication, task allocation and self-organization in New World army ant swarms
Abstract

Social insect colonies collectively solve complex computational problems without centralized control. Such processes have direct application in many non-biological fields, particularly in robotics, internet routing algorithms and the design of autonomous systems. Eciton burchelli army ants forage in massive, highly organized swarms of hundreds of thousands of individuals. Field research and computer modeling work examining the rules by which E. burchelli organize their swarm raids has wide application for improvement in the design and programming of multi-agent autonomous systems and for providing insight into the concepts of collective intelligence and self-organization.

Introduction

Social insect colonies dynamically allocate individuals, resources and tasks to collectively solve many computationally difficult problems without centralized control. System behavior appears out of local interactions between individuals with simple rule sets and no global knowledge. Furthermore, such behavioral algorithms are typically robust to change, maintaining their effectiveness in highly varied environments or resource distributions over a wide range of tasks. The mechanisms of such behavior are of great interest from a biological standpoint because they provide insight into how organization appears in nature [1, 2]. Concepts such as collective intelligence and self-organization are also finding increasingly successful application in many non-biological fields such as robotics, artificial intelligence, data mining and network routing [e.g. 3, 4-6]. However, non-biological applications are usually based on generalized metaphors of social insect behavior rather than a direct knowledge and application of the rules actually used by insects [7, 8]. While there are obviously different constraints on non-biological systems, the goals and problems such systems are being designed to solve can be remarkably similar to those facing living systems. This is particularly true in the design of multi-agent autonomous systems where groups of interacting agents or robots attempt to collectively solve a problem. It is probable that there are basic laws governing how individual rules scale to system-level behaviors [2], yet developing a rigorous description of these rules has proven very difficult. To this end, more research is needed on natural systems in which the emergent behaviors or “goals” of the system and the behaviors of the individuals can be quantitatively described and modeled. I believe that the appearance of coordinated system-level behavior and optimal task allocation in social insects is, in a large part, dependent on rates of feedback and communication between individuals. My research focuses on identifying the mechanisms governing the organization and coordination of swarming behavior in the New World army ant, Eciton burchelli, through field work and computer modeling. Accurate computer models of such systems will allow researchers to examine precisely the influence that specific mechanisms such as individual behavioral rules or communication rates have on the system’s function and how changes in these rules affect the system’s efficiency.

The life-cycle of Eciton  burchelli army ants provides an ideal model system in which to examine questions relating to collective intelligence and agent-based behavioral algorithms. Colonies of E burchelli forage in massive, highly organized swarms involving complex organizational processes and information sharing between hundreds of thousands of ants of multiple castes. Swarm behavior is not centrally organized but generated completely through individual interactions involving ant-ant contact and pheromone trails. Every day, E. burchelli army ants efficiently solve a very computationally complex question – how to distribute as many as 200,000 nearly blind individuals over a 1,500 square meter area to capture, process and retrieve more than 30,000 mobile prey items while sharing only local information [9-11]. Prey can be hundreds of times larger than the ants themselves and must be broken down into pieces small enough to be transported to the nest by single ants or ants working in teams [12]. Army ant behavioral algorithms are robust to drastic changes in swarm size – from a few thousand to a few hundred thousand ants – and huge variations in substrate type. Ant swarms can cross streams up to 2 meters across by making temporary bridges with their bodies [13], and the substrate on which they forage can vary from completely clear ground to massive tree-fall areas hundreds of meters square and 5-10 meters deep.

Nearly 70 years of field work on Eciton has yielded great advances in our understanding of the life-history and biology of army ants [13-16, 17 and others]. But no one has yet quantitatively measured the communication and feedback processes underlying the organization of E. burchelli swarms. The few existing computer models of E. burchelli swarm behavior contain limited biological parameters and were not designed to specifically address the questions detailed above [18, 19]. I hypothesize that the bulk of basic observed behaviors in E. burchelli swarms can be explained through simple interaction rules based on ant density, pheromone concentrations and resource distribution. 

To examine the behavioral rules involved in the organization of E. burchelli swarms, I am creating a detailed individual-based computer simulation of swarm behavior based on parameters determined through my field work and from the literature. Predictions of the model will be tested in the field to verify the accuracy of the model and the modeling work will inform and shape the direction of my field work and allow me to investigate questions that are not easily addressed in the field. 

Specific Research Goals
(I) Biology

The primary biological goals of this research are 1) to identify which behavioral parameters play important roles in organizing swarm behavior in E. burchelli, 2) measure those parameters in the field through behavioral observations and quantitative analysis of video of army ant swarms, and 3) expand on existing knowledge of army ant life-history. Video analysis and marking of individuals are being used to generate quantitative data on contact rates, turn angles, ant density, velocity and behavioral interactions. 

(II) Modeling

In the Spring of 2001 I created a model replicating previous modeling work [see 18, 19, and "Existing Models" section below]. This summer I will begin to extend the model using data measured in (I) to incorporate more biologically realistic descriptions of ant behavior. Once the new data is integrated the model will be tested quantitatively and qualitatively with field-collected data on swarm patterns. Previously measured energy-use values for army ant foraging [20-22] will then be introduced to add an accurate measure of efficiency and fitness. When completed, the model will be used to suggest behavioral manipulations that can be performed in the field to validate model predictions and to address questions relating to self-organizing processes and the design of multi-agent systems. 

(III) Generalization to multi-agent systems

A well designed computer model of army ant swarm behavior which incorporates real-world measures of  efficiency provides a powerful tool for exploring key questions in multi-agent system design and collective intelligence. In particular, one can perform precise sensitivity testing to examine how specific parameters influence the ant swarm’s ability to solve their collective goal of efficiently exploring the environment. The relative importance of communication rate, network size (number of ants), task fidelity and task specialization will be examined in detail.

Predictions for model
It is conventionally believed that searching behavior and recruitment rates play a large role in the organization of E. burchelli army ant swarms [13, 15].  However, my observations suggest that the main challenge faced by foraging E. burchelli is maintaining an optimal rate of exchange between covering the widest area possible to maximize food discovery while preserving a sufficiently uniform density of ants in all areas of the swarm to prevent prey from escaping. Because prey items can be as large as 10 cm, ants must also be efficiently allocated for prey processing which can take hours (personal observation). After processing, prey items must be returned to the bivouac along trails of limited width. The model will enable precise examination of what behavioral parameters are most important for maximizing fitness and producing observed swarm patterns over different variations in prey size and distribution.

Model Insights and generalizations

Examination of E. burchelli foraging behavior suggests the importance of understanding the type of information or resources the system being examined is designed to discover and the distribution of these resources in the environment. This is a crucial question in the development of multi-agent systems as well – what rule sets should agents have under a given set of assumptions about the agent’s collective goals and the environment in which they will function. A well designed simulation of army ant swarming behavior offers a stepping-off point for examining many questions relating to collective intelligence and the design of self-organizing systems. Army ant foraging systems have three principle features that are essential to well designed multi-agent systems as well:

( robustness – army ants can withstand significant colony disturbance without major impact to colony behavior [13];

( scalability – system behavior is maintain across huge variation in system size; 

( flexibility – army ants can adapt to a varied environment and dynamically allocate individuals and tasks as needed.

The above three features of the E. burchelli system are most likely created through the interactions of four principle components: communication, network size, task fidelity and task specialization. 

( Communication: Swarm efficiency is influenced by 1) how many forms of communication or “channels” are available to the system and 2) the vocabulary size or range of communication available to each channel (i.e. bits / channel). As discussed earlier, E. burchelli have to make a trade-off between maintaining sufficient ant density in a given area, maximizing area covered, and allocating enough ants to process and retrieve prey items. This trade-off is mediated through two primary forms of communication in army ants, ant-ant contact rate and response to pheromone. Variations in contact rate happen on a fast timescale and give the ant feedback about local density. Variations in pheromone concentration give the ant temporal feedback about swarm behavior, direction of travel and foraging success. Density is most likely tuned by the relation between an ant’s fidelity to trail pheromone, and turn angle as influenced by both pheromone concentration and contact rate (a direct measure of density). This hypothesis is supported by recent work modeling work showing that spontaneous lane formation can occur in model army ants responding only to pheromone and avoid collisions [23]. Pheromone response has been shown to be sigmoidal [24] but the behavioral effects of this response curve have been yet been quantitatively examined. 

( Network size: Although army ants can successfully swarm with even a few thousand individuals (personal observation), it is not yet known how swarm efficiency scales with swarm size. If self-organizing processes are at work, one would expect swarm efficiency to increase non-linearly. The size of this effect is of great interest both for increasing scientific understanding of self-organization and for providing insight into economies of scale in multi-agent system design. As system size increases, dynamic allocation of individuals and tasks also become increasingly important as do the consequences of unrestrained positive or negative feedback.

( Task fidelity and task specialization: Task fidelity and task specialization play a huge role in organizing E. burchelli swarms [12, 25, 26]. One might expect that 1) the benefits of task fidelity or specialization should increase as potential tasks or environmental variation become more predictable and 2) system efficiency should increase with the systems’ ability to allocate resources. In army ants, individuals involved in foraging and prey retrieval are found in three distinct caste sizes [26]. The largest-sized group, the “sub-majors”, constitute only 3% of the ants in the colony but make up 26% of all ants retrieving prey. The other two castes also retrieve prey, often working in teams with the sub-majors, but they generally spend more time in the swarm and capturing prey than in prey retrieval [12]. However, there is wide variation both in the numbers and size classes of ants involved in prey retrieval [26]. The primary tools the colony has to control task allocation are communication and feedback. The effects of “noise” in the system must be considered as well. In particular, in a stochastic environment, too low fidelity leads quickly to chaos (ants keep switching tasks and never get anything done). But too high fidelity leads to inefficient resource allocation (all ants end up in one location or task).
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